Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 328: 121701, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220338

RESUMO

To illustrate the action mechanism of screw speed on the performance of starch-based straws during the extrusion process, starch-based straws at different screw speeds were prepared using a twin-screw extruder and the structures and characteristics were compared. The results indicated that as screw speeds improved from 3 Hz to 13 Hz, the A chain of amylopectin increased from 25.47 % to 28.87 %, and the B3 chain decreased from 6.34 % to 3.47 %. The absorption peak of hydroxyl group shifted from 3296 cm-1 to 3280 cm-1. The relative crystallinity reduced from 13.49 % to 9.89 % and the gelatinization enthalpy decreased from 3.5 J/g to 0.2 J/g. The performance of starch straws did not increase linearly with increasing screw speeds. The starch straw produced at screw speed of 7 Hz had the largest amylose content, the highest gelatinization temperature, the minimum bending strength, and the lowest water absorption rate in hot water (80 °C). Screw speed had a remarkable impact on the mechanical strength, toughness and hydrophobicity of starch-based straws. This study revealed the mechanism of screw speed on the mechanical strength and water resistance of starch straws in the thermoplastic extrusion process and created the theoretical basis for the industrial production of starch-based straws.


Assuntos
Amilopectina , Amido , Amido/química , Amilopectina/química , Temperatura Alta , Amilose/química , Água/química
2.
Int J Biol Macromol ; 253(Pt 6): 127140, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37778579

RESUMO

In order to investigate the effects of different crosslinking agents on physicochemical properties and adsorption properties of porous starch. Native corn starch was hydrolyzed by maltase and crosslinked with different crosslinking agents. Sodium trimetaphosphate crosslinked porous starch (STMP-MPS), malic acid cross-linked porous starch (MA-MPS) and citric acid cross-linked porous starch (CA-MPS) were prepared. After crosslinking, MA-MPS and CA-MPS showed a new CO stretching absorption peak at 1738 cm-1, and the crosslinking degree was much higher than that of STMP-MPS. The surface area of MA-MPS was 36 % higher than that of STMP-MPS. Compared with the average pore size of 12.43 nm of STMP-MPS, CA-MPS (14.02 nm) and MA-MPS (14.79 nm) were increased more significantly. The degradation temperature of MA-MPS and CA-MPS was increased by the introduction of ester bond, which indicates that the organic acid cross-linking strengthens the starch granules and hence more energy is required for disruption. Compared with STMP-MPS, the water absorption of MA-MPS and CA-MPS increased by 64 % and 32 %, respectively. Furthermore, the adsorption capacity of MA-MPS to essential oil was the strongest, about 4 times that of STMP-MPS. Overall, it is feasible to modify porous starch by crosslinking reaction to improve its heat resistance and adsorption properties.


Assuntos
Amilases , Amido , Amido/química , Adsorção , Zea mays/metabolismo , Compostos Orgânicos
3.
Foods ; 12(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37835211

RESUMO

Herein, we applied the Illumina MiSeq pyrosequencing platform to amplify the V3-V4 hypervariable regions of the 16 S rRNA gene of the gut microbiota (GM) and a gas chromatograph-mass spectrometer to detect the metabolites after supplementation with pumpkin oligosaccharides (POSs) to determine the metabolic markers and mechanisms in rats with type 2 diabetes (T2D). The POSs alleviated glucolipid metabolism by decreasing the serum low-density lipoprotein (LDL), total cholesterol (TC), and glucose levels. These responses were supported by a shift in the gut microbiota, especially in the butyric-acid-producing communities. Meanwhile, elevated total short-chain fatty acid (SCFA), isovaleric acid, and butyric acid levels were observed after supplementation with POSs. Additionally, this work demonstrated that supplementation with POSs could reduce TNF-α and IL-6 secretion via the FFA2-Akt/PI3K pathway in the pancreas. These results suggested that POSs alleviated T2D by changing the SCFA-producing gut microbiota and SCFA receptor pathways.

4.
Int J Biol Macromol ; 253(Pt 7): 127411, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838131

RESUMO

This study investigates the effects of heat treatment before high-pressure homogenization (HHPH) and heat treatment after high-pressure homogenization (HPHH) at different pressures (20, 60, and 100 MPa) on the structural and emulsification properties of soy protein isolate (SPI). The results indicate that HHPH treatment increases the surface hydrophobicity (H0) of the SPI, reduces ß-fold and irregular curls, leading to the formation of soluble aggregates, increased adsorbed protein content, and subsequent improvements in emulsification activity index (EAI) and emulsion stability index (ESI). In contrast, the HPHH treatment promoted the exchange of SH/SS bonds between protein molecules and facilitated the interaction of basic peptides and ß-subunits, leading to larger particle sizes of the soluble aggregates compared to the HHPH-treated samples. However, excessive aggregation in HPHH-treated aggregates leads to decreased H0 and adsorbed protein content, and increased interfacial tension, negatively affecting the emulsification properties. Compared to the HPHH treatment, HHPH treatment at homogenization pressures of 20 to 100 MPa increases EAI and ESI by 5.81-29.6 % and 5.31-25.9 %, respectively. These findings provide a fundamental basis for soybean protein manufacturers to employ appropriate processing procedures aimed at improving emulsification properties.


Assuntos
Temperatura Alta , Proteínas de Soja , Proteínas de Soja/química , Emulsões/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula
5.
Carbohydr Polym ; 321: 121297, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739530

RESUMO

To study the relationship between the number of hydroxyl groups of polyols and the plasticizing effect, the effects of different polyols including ethylene glycol, glycerol, erythritol, xylitol and sorbitol on the structure and properties of corn starch straws were analyzed and compared. The results showed that the addition of plasticizer significantly improved the performance of starch straws, which greatly improved the mechanical properties, water absorption rate (WAR) and thermal stability. However, there was no linear relationship between the plasticizing effect on starch straws and the number of hydroxyl groups in plasticizers. Fourier transform infrared (FTIR) results showed that erythritol formed the strongest intermolecular interaction with starch. Starch straws with erythritol (S-ERY) had the highest bending force (Fb = 25.78 N) and the lowest WAR. Starch straws with glycerol (S-GLY) showed the lowest relative crystallinity (RC = 12.87 %) and the highest temperature of the maximum degradation (Tdmax = 302.1 °C). In addition, after storing for 180 days, S-GLY showed higher modulus of elasticity in bending (Eb = 4.26 N/cm) and a uniform surface.


Assuntos
Eritritol , Glicerol , Elasticidade , Radical Hidroxila , Plastificantes , Amido , Água
6.
Int J Biol Macromol ; 242(Pt 4): 124914, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217055

RESUMO

Sorbitol as a plasticizer is easily crystallized from starch film, resulting in the reduction in plasticizing effect. To improve the plasticizing performance of sorbitol in starch films, mannitol, an acyclic hexahydroxy sugar alcohol, was used to cooperate with sorbitol. The effects of different ratios of mannitol (M) to sorbitol (S) as a plasticizer on mechanical properties, thermal properties, water resistance and surface roughness of sweet potato starch films were investigated. The results showed that the surface roughness of starch film with M:S (60:40) was the smallest. The number of hydrogen bonds between plasticizer and starch molecule was proportional to the mannitol content starch film. With the decrease of mannitol contents, the tensile strength of starch films gradually decreased except for M:S (60:40). Moreover, the transverse relaxation time value of starch film with M:S (100:0) was the lowest, indicating that it had the lowest degree of freedom of water molecules. Starch film with M:S (60:40) is the most effective in delaying the retrogradation of starch film. This study offered a new theoretical basis that different ratios of mannitol to sorbitol improve different performances of starch films.


Assuntos
Ipomoea batatas , Amido , Amido/química , Sorbitol/química , Manitol , Plastificantes/química , Resistência à Tração , Água/química
7.
Front Nutr ; 10: 1140737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113296

RESUMO

Whey protein microgel (WPM) is an emerging multifunctional protein particle and methods to improve its functional properties are continuously being explored. We developed a method to prepare WPM by heat-induced self-assembly under different ultrasound power (160, 320, 480, and 640 W/cm2) and characterized the particle size, surface hydrophobicity, disulfide bond, viscosity, and foam properties of WPM. Ultrasound increased the particle size of WPM-160 W to 31 µm. However, the increase in ultrasound power gradually reduced the average particle size of samples. The intrinsic fluorescence spectrum showed that ultrasound unfolded the structure of whey protein and exposed more hydrophobic groups, which increased the surface hydrophobicity of WPM. In addition, infrared spectroscopy suggested ultrasound decreased the α-helix content of WPM, implying an increase in the flexibility of protein molecules. The disulfide bond of WPM was broken by ultrasound, and the content of the-SH group increased correspondingly. The rheology indicated that the apparent viscosity decreased with the increase of ultrasonic power. Compared with the control, the ultrasonicated WPM displayed higher foam ability. Ultrasound improved the foam stability of WPM-160 W but destroyed the foam stability of other samples. These results suggest that proper ultrasound treatment can improve the physicochemical and foam properties of WPM.

8.
Int J Biol Macromol ; 236: 124006, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907303

RESUMO

To better understand the correlation between structure and properties in thermoplastic starch biopolymer blend films, the effects of amylose content, chain length distribution of amylopectin and molecular orientation of thermoplastic sweet potato starch (TSPS) and thermoplastic pea starch (TPES) on microstructure and functional properties of thermoplastic starch biopolymer blend films were studied. After thermoplastic extrusion, the amylose contents of TSPS and TPES decreased by 16.10 % and 13.13 %, respectively. The proportion of the chains with the degree of polymerization between 9 and 24 of amylopectin in TSPS and TPES increased from 67.61 % to 69.50 %, and from 69.51 % to 71.06 %, respectively. As a result, the degree of crystallinity and molecular orientation of TSPS and TPES films increased as compared to sweet potato starch and pea starch films. The thermoplastic starch biopolymer blend films possessed a more homogeneous and compacter network. The tensile strength and water resistance of thermoplastic starch biopolymer blend films increased significantly, whereas thickness and elongation at break of thermoplastic starch biopolymer blend films decreased significantly.


Assuntos
Amilopectina , Amido , Amido/química , Amilopectina/química , Amilose/química , Água/química , Resistência à Tração
9.
Int J Biol Macromol ; 239: 124211, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001779

RESUMO

Starch/polyvinyl alcohol (PVA) degradable straws with different PVA contents were prepared by the twin-screw extrusion method. The results showed that the starch/PVA straws with 40 % PVA (PS4) had the highest dispersion uniformity of starch and PVA to achieve the best compatibility, and the compatibility size was below the micron level. Molecular interactions between starch and 40 % polyvinyl alcohol reached the highest due to the highest strength of hydrogen bonds, hence resulting in the highest texture densities. Consequently, the largest compatibility and molecular interactions significantly improved the mechanical properties and water resistance of PS4. Compared to the starch/PVA straw with 0 % PVA (PS0), swelling volume of PS4 decreased by 45.5 % (4 °C) and 65.2 % (70 °C), respectively. After soaking, the diameter strength increased by 540.1 % (4 °C, 1 h) and 638.7 % (70 °C, 15 min), respectively. Water absorption decreased by 45.3 % (4 °C, 30 min) and 27.6 % (70 °C, 30 min).


Assuntos
Álcool de Polivinil , Amido , Álcool de Polivinil/química , Amido/química , Água/química
10.
Carbohydr Polym ; 299: 120238, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876769

RESUMO

Waxy maize starch (WMS) was modified using sequential α-amylase and transglucosidase to create enzyme-treated waxy maize starch (EWMS) with higher branching degree and lower viscosity as an ideal healing agent. Self-healing properties of retrograded starch films with microcapsules containing WMS (WMC) and EWMS (EWMC) were investigated. The results indicated that EWMS-16 had the maximum branching degree of 21.88 % after transglucosidase treatment time of 16 h, and A chain of 12.89 %, B1 chain of 60.76 %, B2 chain of 18.82 % and B3 chain of 7.52 %. The particle sizes of EWMC ranged from 2.754 to 5.754 µm. The embedding rate of EWMC was 50.08 %. Compared to retrograded starch films with WMC, water vapor transmission coefficients of retrograded starch films with EWMC were lower, while tensile strength and elongation at break values of retrograded starch films were almost similar. Retrograded starch films with EWMC had higher healing efficiency of 58.33 % as compared to that Retrograded starch films retrograded starch films with WMC was 44.65 %.


Assuntos
Prunella , Amido , Zea mays , Amilopectina , Tamanho da Partícula
11.
Carbohydr Polym ; 305: 120534, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737187

RESUMO

To improve the performance of starch straws in rapidly cooling and annealing procedure of thermoplastic extrusion, control straw was prepared through slowly cooling at 25 °C, and starch straw was prepared through regulating different rapid cooling temperatures including 20 °C, 5 °C, -10 °C and -20 °C. The results indicated that control straw exhibited a homogeneous state, while starch straws treated by rapid cooling displayed like a wash-board structure. Compared to control straw, the ratio of the absorption peak intensity of 1047 and 1022 cm-1 increased from 1.050 to 1.455 as cooling temperatures decreased from 25 °C to -20 °C, indicating short-range order of the double helix structure significantly enhanced. The relative crystallinities of starch straws increased from 12.01 % to 16.58 %. The maximum bending force value (60.92 N) of starch straws cooled at -20 °C was significantly higher than that (46.14 N) of control straw. Conversely, the modulus of elasticity in bending values (4.21-16.43 N/cm) of rapid cooling-treated straws were significantly lower than that (48.42 N/cm) of control straw. Water absorption of rapid cooling-treated straws were lower than that of control straw, indicating the hydrophobicity property of starch straws significantly improved.


Assuntos
Criopreservação , Amido , Criopreservação/métodos , Temperatura , Temperatura Baixa , Transição de Fase
12.
Int J Biol Macromol ; 230: 123114, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599387

RESUMO

To illustrate the correlations between molecular structures and the film-forming properties of thermoplastic starch from various botanical sources, starches from cereal, tuber and legume were modified by thermoplastic extrusion and the corresponding thermoplastic starch films were prepared including thermoplastic corn starch (TCS), thermoplastic rice starch (TRS), thermoplastic sweet potato starch (TSPS), thermoplastic cassava starch (TCAS) and thermoplastic pea starch (TPES) films. TPES film displayed a higher tensile strength (6.28 MPa) and stronger water resistance, such as lower water solubility (15.70 %), water absorption (42.35 %), and water vapor permeability (0.285 g·mm·h-1·m-2·kPa-1) due to higher contents of amylose and B1 chains. TCAS showed a smoother and more amorphous film due to higher amylopectin content, resulting higher elongation at break and larger opacity. TCS film was the most transparent due to a compacter network and more ordered crystallinity structure, which was suit for the packaging of fresh vegetables and aquatic products, whereas TCAS film was the opaquest, which protected package foods from light such as meat products, etc. The outcome would provide an innovative theory to regulate accurately the functional properties of thermoplastic starch films for different food needs.


Assuntos
Amilose , Amido , Estrutura Molecular , Amido/química , Amilose/química , Amilopectina , Fenômenos Químicos
13.
Food Chem ; 380: 132226, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35093661

RESUMO

To reduce the wheat-flour-based food texture and flavor deterioration caused by starch retrogradation, herein wheat starch, the most ingredient in wheat flour, was modified by transglucosidase to delay long-term retrogradation of wheat starch. The study proposed promising data of transglucosidase-treated starch about structure, crystallinity and retrogradation kinetics. Structural properties showed that transglucosidase treatment shortened the average chain length from 19.49 to 16.10 and induced the dominance of amorphous state. Moreover, branching degree increased from 14.11% to 17.97% after transglucosidase treatment, resulting in higher water mobility. Amylose content increased from 25.33% to 59.00% due to the hydrolysis ability of transglucosidase. Relative crystallinity of the retrograded starches decreased from 24.33% to 14.50%. Furthermore, the Avrami parameters demonstrated that transglucosidase treatment significantly retarded the retrogradation rate of wheat starch due to the decrease of re-crystalline rate. The outcoming would supply a solid theory foundation for exploring the wheat staple foods with higher qualities.


Assuntos
Farinha , Triticum , Amilose , Hidrólise , Amido
14.
Int J Biol Macromol ; 203: 10-18, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35032494

RESUMO

The study intended to explore the influence of corn resistant starches type III (RS3s) prepared by autoclave, debranching, and microwave heat on the rheology, structure, and viable counts of set yogurt. The rheological analysis suggested that RS3s enhanced the elastic and viscous modulus of yogurt, and that microwave-heated RS was the most effective for improving viscoelasticity. Fitting the creep data using the Burger model showed that yogurt with microwave-heated RS increased the structural strength of yogurt, which displayed the highest instantaneous and viscoelastic deformations. The confocal laser scanning microscopy and scanning electron microscopy micrographs demonstrated that autoclaved and debranched RS3s formed large fragments and disrupted the continuity of the milk protein structure; however, microwave-heated RS evenly filled the gel network and formed an interpenetrating network with proteins. The bacterial count and acidity of yogurt indicated that microwave-heated and debranched RS3s promoted the growth of lactic acid bacteria and accelerated the fermentation process of yogurt. The results of this study demonstrated that microwave-heated RS is a favorable supplement to the microstructure and rheological properties of yogurt compared with autoclaved and debranched RS3s.


Assuntos
Iogurte , Zea mays , Fermentação , Proteínas do Leite , Reologia , Amido/química
15.
Int J Biol Macromol ; 176: 177-185, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581211

RESUMO

The objective of this study was to investigate the effects of hydrothermal treatments (heat-moisture treatment (HMT) and annealing (ANN)) on the physicochemical properties and in vitro digestibility of yam starch and yam flour. Hydrothermal treatments decreased the pasting properties of yam starch and yam flour. Compared with yam starch, HMT significantly (p < 0.05) reduced the pasting viscosities of yam flour. Both HMT and ANN caused an increase of the gelatinization temperatures (To, Tp, and Tc) and a decrease of enthalpy (△H). The increasement in ratio of 1047/1022 cm-1 and 995/1022 cm-1 suggested that HMT and ANN resulted in an increase in short-range order. The crystalline pattern of all samples was still A-type, and HMT yam starch exhibited higher crystallinity (26.20%). The most significant inhibition of in vitro digestibility was found in HMT yam flour, with slowly digestible starch and resistant starch contents increasing by 3.73% and 4.40%, respectively. Hydrothermal treatments made the no-starch ingredients in yam flour agglomerate and adhere to starch granules. Confocal laser scanning microscopy showed that the starch being coated or embedded by protein was a possible reason for the differences in physicochemical properties and in vitro digestibility between yam starch and yam flour.


Assuntos
Dioscorea/química , Amido/química , Fenômenos Químicos , Cristalização , Digestão , Alimentos , Temperatura Alta , Humanos , Técnicas In Vitro , Microscopia Confocal , Microscopia Eletrônica de Varredura , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/ultraestrutura , Água
16.
Eur J Nutr ; 60(2): 975-987, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32564148

RESUMO

PURPOSE: To reveal the mechanism that links industrial trans fatty acids (iTFAs) to various chronic diseases, we examined the impact of iTFAs on the local microenvironment of the small intestine (duodenum, jejunum and ileum). METHODS: Forty male 8-week-old mice were fed diets containing one of the following: (1) low soybean oil (LS); (2) high soybean oil (HS); (3) low partially hydrogenated oil (LH), and (4) high partially hydrogenated oil (HH). The analysis of microbiota from small intestinal content was performed by real-time qPCR. The fatty acid composition of small intestine mucosa was measured by GC/MS, and comparative transcriptome of the small intestinal mucosa was analyzed by RNA-sequencing. RESULTS: The intake of iTFAs changed the fatty acid spectrum of the small intestine mucosa, especially the excessive accumulation of iTFA (mainly elaidic acid). For microbiota, the relative abundance of δ- and γ-proteobacteria, Lactobacillus, Desulfovibrio, Peptostreptococcus and Turicibacter were significantly different in the iTFA diet groups compared to the control group. Based on the identification of differently expressed genes(DEGs) and pathway annotation, comparative transcriptome analysis of the small intestine mucosa revealed obvious overexpression of genes involved in the extracellular matrix (ECM)-receptor interaction and the peroxisome proliferator-activated receptor signaling pathway, which suggests that ECM remodeling and abnormal lipid metabolism may have occurred with iTFA ingestion. CONCLUSION: Our research demonstrated multiple adverse effects of iTFA that may have originated from the small intestine. This finding could be to facilitate the development of new strategies to suppress iTFA-related diseases by reversing the adverse effects of iTFA on intestinal health.


Assuntos
Microbiota , Ácidos Graxos trans , Animais , Ácidos Graxos , Intestino Delgado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
17.
Food Chem ; 341(Pt 2): 128082, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33166823

RESUMO

Potato flour is used in bakery products, extruded products and snacks. However, it displays weaker gel strengths and thus the wholesome utility is curtailed significantly. To improve viscoelastic properties and stability of potato gels, herein potato flour was treated with laccase and peroxidase to create a protein network structure leading to stable gels. The results revealed that the secondary structure of potato proteins altered upon the enzyme treatment. The gels of peroxidase-treated potato flour (PPF) and laccase-treated potato flour (LPF) displayed larger anti-shear ability, thermal stability and stronger three-dimensional network structure compared to the native potato gel. The PPF and LPF gels exhibited stronger viscoelastic properties and structural stability compared to peroxidase-treated potato protein and laccase-treated potato protein gels. The outcome serves as a theoretical basis to improve the properties of potato gels and to promote the designing and the development of novel potato flour based functional food.


Assuntos
Farinha , Lacase/química , Peroxidase/química , Solanum tuberosum/química , Amido/química , Géis/química , Proteínas de Vegetais Comestíveis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade
18.
Food Res Int ; 138(Pt B): 109778, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33288164

RESUMO

High-fat diets (HFDs) can induce health problems including gut microbiota dysbiosis and cardiac dysfunction. In this study, we modulated the gut microbiota in mice to investigate whether Lycium barbarum polysaccharide (LBP), a potential prebiotic fiber, could alleviate HFD-induced myocardial injury. Mice fed a HFD were given LBP (HFPD group) by gavage once/day for 2 months. Left ventricular function and serum trimethylamine N-oxide were significantly improved in HFPD mice compared with HFD mice. HFD increased the abundances of Bifidobacterium, Lactobacillus, and Romboutsia, while LBP increased the abundances of Gordonibacter, Parabacteroides, and Anaerostipes. Fecal metabolic profiling revealed significant increases in metabolites involved in nicotinate, nicotinamide and purine metabolism pathways, as well as indole derivatives of tryptophan metabolites in the HFPD group. LBP reduced intestinal permeability and inflammatory cytokine levels, maintained a healthy intestinal microenvironment, and alleviated myocardial injury. Modulating the gut microbiota is a potential treatment for cardiovascular diseases.


Assuntos
Microbioma Gastrointestinal , Animais , Dieta Hiperlipídica , Medicamentos de Ervas Chinesas , Disbiose , Metaboloma , Camundongos
19.
J Agric Food Chem ; 68(6): 1750-1759, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31971384

RESUMO

Alcohol is a globally well-established cause of fatty liver disease (FLD). Increased salt consumption is associated with an increased prevalence of adipocyte hypertrophy and liver injury. In this study, high dietary salt potentiated chronic alcohol-induced hepatic damage. We explored the physiological mechanism of alcoholic FLD in the gastrointestinal tract. Male C57BL/6J mice (8-week-old) were fed a high-salt diet (HSD; 4% NaCl) with or without chronic ethanol (CE) for 1 month. The fecal microbiota, serum biochemical indices, intestinal permeability, level of liver damage, and liver mitochondria were evaluated. The HSD, CE, and their combination (HSDE) significantly changed the gut microbiota's structure, and the HSDE mice contained more probiotic species (e.g., Bifidobacterium and Lactobacillus). The serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase levels were increased, and the lipid was accumulated in the liver tissues in the CE, HSD, and HSDE groups, which indicated liver damage, especially in the HSDE group. The increased intestinal permeability and mitochondrial dysfunction in the liver cells caused greater injury in the HSDE group than in the other groups. Thus, consuming HSD with alcohol contributes to FLD development and progression.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Fígado Gorduroso Alcoólico/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Cloreto de Sódio na Dieta/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Etanol/efeitos adversos , Etanol/metabolismo , Fígado Gorduroso Alcoólico/etiologia , Fígado Gorduroso Alcoólico/metabolismo , Fezes/microbiologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cloreto de Sódio na Dieta/efeitos adversos
20.
Food Chem ; 277: 504-514, 2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30502177

RESUMO

Sweet potato starch products possess unacceptable hardness and poor transparency that in-turn reduces consumer acceptability. To expand the sweet potato starch utility with user acceptable and palatable food products herein enzyme modification has been carried out. Transglucosidase (TGAN) in combination with maltogenic α-amylase (MABS) and ß-amylase (BA) appears to be advantageous to modulate sweet potato starch properties. The MABS → BA → TGAN treatment increases the α-1, 6 glycosidic linkage ratio and short chain proportions (DP ≤ 24). Decrease in chain length, molecular weight and long chain proportions (DP > 24) is noticed. The initial C-type starch polymorphic structure transforms to B-type structure along with decreased crystallinity. Solubility increases substantially with concomitant decrease in viscosity, gelatinization temperature and melting enthalpy. The outcome is believed to open new pathways for regulating the physicochemical properties of sweet potato starch especially by enzyme modification to the design and development of novel sweet potato starch-based products.


Assuntos
Fenômenos Químicos , Manipulação de Alimentos , Ipomoea batatas/química , Ipomoea batatas/enzimologia , Amido/química , Amilose/análise , Varredura Diferencial de Calorimetria , Hidrodinâmica , Microscopia Eletrônica de Varredura , Estrutura Molecular , Peso Molecular , Reologia , Termodinâmica , Viscosidade , Difração de Raios X , alfa-Amilases/metabolismo , beta-Amilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...